
January 2009
Volume � Issue 1

Mastering Data
Retention

Cryptography
as a Service

Key Information Security
Trends for 2009

Complying with the
Red Flag Rules

Ways to Determine or
Prioritize Security Initiatives

The Dark Side of Computing:
The study of computer crime, Part 1

Using Code Escrow Services to Mitigate
Third-Party Risks

2

Table of Contents

Feature
12 Mastering Data Retention

By Mike McGurkin

The author outlines steps for creating, implementing, and successfully executing best-in-class data retention
programs and policies.

17 Cryptography as a Service
By Jeff Stapleton

The security attributes for protecting data in a
cloud application environment are discussed, and
the ramifi cations for using cryptography in a cloud
environment are explored.

22 Key Information Security Trends for 2009
By Jonathan Gossels & Philip Cox

A look at information security trends from cloud
computing and virtualization to compliance and the
changing role of security departments.

26 Complying with the Red Flag Rules
By Bradley J. Schaufenbuel

Financial institutions or companies making use of
credit facilities should be aware of the red fl ag rules
for preventing identify theft. This article describes the
requirements of the rules and sets forth a basic plan
for achieving compliance with them.

30 Ways to Determine or Prioritize Security
Initiatives
By Matt Ege

How do you as an information security professional
determine what security initiatives to work on each
day? Prioritization efforts should include leveraging
existing projects or activities that are already
performed within the environment.

34 The Dark Side of Computing: The study of
computer crime
Donn B. Parker

Part 1: The Computer Abuse Study Project

38 Using Code Escrow Services to Mitigate
Third-Party Risks
By Raoul Gomes and Rafael Etges

This article discuses source code escrow and how the
service can be used to mitigate the risks associated
with SaaS or custom software developed by third
parties.

Also in this issue

3 From the President

5 Sabett’s Brief
A Holistic View of Trust

6 Herding Cats
“Trust THIS!”

7 The Art of War
Implications of Formlessness

8 Security CXO
10 Things You Should Consider Before Your Interview

41 toolsmith
WebJob

47 Inside the AV Lab
Rogue Security Software in 2008

The ISSA Journal (USPS PP 152) is published monthly by the Information Systems Security Association, 9220 SW Barbur Blvd. #119-333,
Portland, Oregon 97219. Application to mail at periodicals postage rates is pending at Portland, Oregon and at additional mailing offi ces.
Postmaster: Send address changes to ISSA Journal, 9220 SW Barbur Blvd., #119-333, Portland, Oregon 97219.

Articles

ISSA Journal | January 2009

Article Title | Article Author

����

ISSA The Global Voice of Information Security

The use of Software-as-a-Service (SaaS) has increased
for many reasons: flexibility and productivity gains of
telecommuting employees, the reduced cost of own-

ership for software licenses and maintenance cycles, or the
strategic driver of being a lean organization. In addition to
the risks associated with any software (misuse of code and
others), the risks associated with SaaS or custom software
developed by third parties include the lack of access to the
source code in the event of a business disruption or security
investigation. Source code escrow is an area that is just gain-
ing ground to address these concerns and to mitigate the risks
surrounding these scenarios. This article will discuss the code
escrow approach and benefits provided by this service.

Escrow service has been around in many industries in order
to mitigate risk. It is used to facilitate the transfer of prop-
erty from one individual to another through the use of an
independent third party. Essentially it consists of an agree-
ment that an item is deposited with an escrow agent, held in
trust or security, and delivered to the grantee or promisee on
the fulfillment of certain future conditions. Individuals are
probably most familiar with this service during a real estate
transaction, e.g., ensuring the transfer of title once certain
conditions have been met such as the passing of inspection.

What is escrow and code escrow?
Most information security practitioners are familiar with
encryption key escrow, whereby the custody of a decryption
key is held by two or more parties; in order to recover the
decryption key, input from these parties is required. Key es-
crow gained media attention in the U.S. during the Clipper
Chip1 controversy, when in 1993 the Clinton administration
proposed a new standard developed with the National Secu-
rity Agency. Under the standard, computer chips would use

1 More information about the Clipper Chip controversy can be found in the Wikipedia
article: http://en.wikipedia.org/wiki/Clipper_Chip. The National Institute of
Standards and Technology provides additional documentation and discussion papers
about encryption key escrow: http://csrc.nist.gov/keyrecovery.

an algorithm called Skipjack to encrypt information; the FBI
and the Justice Department would have control over the de-
cryption keys. The Clipper Chip device was designed to be
installed on all telephones, computer modems, and fax ma-
chines to encrypt voice communications. The key recovery
process used during criminal investigations would be depen-
dant upon a warrant to prevent inappropriate interception of
communications by law enforcement; however, public outcry
and privacy concerns prevented the Clipper Chip initiative
from being executed in a large scale at the time.

Despite its eventual failure, the Clipper Chip initiative is a
definite example of escrow mechanisms being coordinated
and deployed on a very large scale. When the specific con-
ditions on this escrow model were met, the decryption keys
would be released to the selected entities and communication
records would become accessible for law enforcement pur-
poses.

Escrow companies are also commonly used in the transfer of
high value personal and business property, like websites and
businesses, and in the completion of person-to-person remote
auctions (such as eBay). A similar approach can be taken to
govern and control the ownership and possession of applica-
tion source code. Source code escrow agents hold source code
of software in trust just as other escrow companies hold cash.
The highly valuable (and often secret) source code is only re-
leased by the agent to either party upon specific terms of the
escrow agreement (such as failure to maintain the applica-
tion, transfer of ownership of the intellectual property rights,
or the liquidation of the owner of the source code).2

Why use code escrow?
In recent years the protection of applications and systems has
gradually replaced the focus on network security following a
maturation of technologies designed to safeguard networks.
Once networks became more resilient, attack vectors moved
to the application security space and started exploiting vul-

2 Wikipedia – http://en.wikipedia.org/wiki/Escrow.

This article discuses source code escrow and how the service can be used to mitigate the

risks associated with SaaS or custom software developed by third parties.

By Raoul Gomes and Rafael Etges

Using Code Escrow Services
to Mitigate Third-Party Risks

ISSA Journal | January 2009

�9

million users, but one cannot refute the benefits that code
escrow would bring to this situation.

Software service providers manage risk the same way enter-
prises do: they assess the risks to themselves and apply con-
trols accordingly. When the source code of applications is
shared with an independent escrow agent and available to the
enterprise for ownership transfer, investigation, or litigation
under certain conditions (e.g., breach, violation of SLAs, or
business interruption of the provider), the provider will be
encouraged to apply sufficient safeguards internally to pro-
tect itself and its customers. There is now a transfer or shar-
ing, to some extent, of the risks to the service provider that
does not happen otherwise. Without an escrow mechanism
in place, the enterprise is solely exposed to the risks.

Risk mitigated through code escrow
Consider, from a risk perspective, what would happen in the
event of a business interruption by that third party supplier
to your operations? What if they go out of business without
warning? What if this were a billing software, an inventory
management system, or a client management system and it
stops functioning? Most business interruption insurance
policies do not cover these scenarios, and if they do, the costs
can be substantial. The bottom line is that it does not solve
the problem but only provides some form of compensation.

In such cases, the escrow mechanism can be your best option
to gain access to the source code of these critical applications.
Ownership can be restored to the purchasing organization
ensuring the continuity of their life cycle. Internal resources
or another third party could be employed to maintain these
applications and, although there would be a cost associated
with the change, the organization would have a choice other
than stopping its operations until an alternative system is
selected, deployed, and business support is properly transi-
tioned.

How does it work?
Once certain software have been identified as requiring risk
mitigation actions, the option of code escrow is available
to the organization. The following outlines the process and
what to expect when exercising this option.

1. Selection of escrow agent, agreement with
software provider, and contract negotiation
During this step a trusted and reliable escrow agent should be
selected by the enterprise, and the service provider must agree
with the escrow conditions. Details such as regular updates
to the source code repository in escrow should be arranged
between the service provider and the escrow agent, with
some degree of monitoring from the enterprise. Contractual
language should be revised carefully with provisions for the
conditions under which the source code will be transferred to
the enterprise, the service provider maintenance and change
management processes, as well as how the escrow agent will

nerable code. This evolution to an arms race between attack-
ers and industry demands attention to the availability and
integrity of source code.

Outsourcing application development peril
Economic drivers are encouraging the outsourcing of soft-
ware development in which a significant portion of the code
being created by third parties is exposed to risk. Quocirca, a
business and IT research group, conducted a study with IT di-
rectors and executives from 250 companies across Germany,
the UK, and the U.S. who were accountable for the security
of corporate applications. All those who admitted to being
subjected to frequent hacking had outsourced some level of
software development, with almost 90% outsourcing more
than 40% of the development.3

In Canada, another study performed in conjunction with the
University of Toronto in 2008 found that application secu-
rity breaches are reported more often by organizations using
outsourcers than those who do not outsource.4 For example,
6% of outsourcers reported Web defacements as compared to
only 1% for non-outsourcers. Outsourcers also fared slightly
worse in the areas of identity theft and misuse of a public
Web application. Likely related to lack of application-level
controls, breaches relating to loss of confidential data were
much higher for outsourcing organizations at 9%, compared
to 4% for those that do not outsource.

These studies are showing that organizations relying on
third-party software for business critical operations are put-
ting themselves in a significant degree of risk. This can be
either through a specific application or SaaS which is used as
part of a critical process. Even corporations with the best in-
ternal controls in place and well-managed processes will still
be exposed as this point of failure is outside of their control,
sometimes regulated by contracts and service agreements
only, which are not preventative measures and will do little
good in the case of a business interruption.

A couple outsourcing nightmares:

During the summer of 2007 the online trading company
TS Ameritrade was forced to disclose a breach involv-
ing the personal details regarding 6.3 million customers
caused by a back door created by a programmer.5

Another example of how the unlikeliest of circumstances
can catch up to any organization relates to IT Factory, a
major SaaS provider. On December 1, 2008 the company
adjudicated bankruptcy. This was a reputable company
that was awarded Denmark's Best IT-company 2008.6 It
remains to be seen what the outcome shall be for its 1.3

3 A summary of the survey can be found at http://www.quocirca.com/pages/analysis/
reports/view/store250/item21107/?link_683=21107.

4 The full TELUS/Rotman School of Business report from the University of Toronto can
be found at www.telus.com/securityreport.

5 Quorcica survey as in #2.

6 http://www.computerworld.dk/art/47637/top-100-her-er-danmarks-dygtigste-it-
virksomhed?a=fp_3&i=1.

•

•

Using Code Escrow Services to Mitigate Third-Party Risks | Raoul Gomes and Rafael Etges ISSA Journal | January 2009

�0

available, or the development or staging environments will
not support the source code, and the CIO may be expecting
normal operations to resume at any moment.

The truth is, because the probability of the code escrow be-
ing triggered is (hopefully) low, it is only natural that an or-
ganization’s readiness to use that same source code should
also be quite low (as higher readiness equals higher costs).
In such situations, it is better to manage expectations in a
realistic manner, and not assume that just because you have
the source code everything will go back to business as usual.
It is likely that the source code will now be used as part of the
disaster recovery or business continuity processes started by
the sudden loss of a strategic partnership with a software ven-
dor. Development resources will need to be diverted to the
newly acquired source code, first to understand and maintain
it, and later to keep its regular life cycle. The development
and staging environments may be strained by the insertion
of the new technology, and a surge in urgent or emergency
changes may take place, until the source code maintenance is
repatriated, or transferred to a new vendor. All these factors
need to be considered when devising a strategy that makes
use of code escrow services, or its purpose may be defeated by
lack of preparation.

Who should use code escrow services?
It is not uncommon for larger organizations to use SaaS ser-
vices. Salesforce.com, a leader in the SaaS environment, has
clients spanning different industries including insurance,
health care, communication, and several others.8 This dem-
onstrates that organizations of all sizes have accepted this
business solution as standard practice. According to Iron-
Mountain,9 75% of Fortune 500 and 75% of FTSE use code
escrow agreements, and another study claims that 80% of all
Fortune 1,000 firms have at least one software package on de-
posit with an escrow agent.10

Amoco Oil Corporation provides a successful example of
custom-made software being protected by code escrow. The
energy corporation acquired a new technology that, although
very promising, was developed by an unproven software pro-
vider. Amoco exercised diligence, and as part of the technol-
ogy acquisition it included contractual controls wherein the
provider accepted to escrow the source code and release in
case of bankruptcy. Shortly after that the provider went out
of business and Amoco retained the software which was criti-
cal for its operations.11

Code escrow is not a perfect solution for all companies and
scenarios; however, there are certain risk areas in which it
is definitely prudent to consider using it. Examples would
include the transfer of website ownership, the use of third-

8 http://www.salesforce.com/customers.

9 IronMountain website http://www.ironmountain.co.uk/resource/datasheets/IPMO
verviewUK.pdf.

10 W. D. Denson, “The Source Code Escrow: A Worthwhile or Worthless Investment?”
– http://www.bankruptcy.rutgers.edu/source_code_escrow.pdf.

11 Ibid.

safeguard the source code (e.g., access controls, encryption,
physical security, etc).

The enterprise may be involved in ensuring that the source
code submitted to the escrow agent is valid: years ago, Radis-
son Hotels Worldwide outsourced the maintenance of its mis-
sion-critical reservation system with an escrow agreement in
place. The code was released as a result of the provider going
out of business; however, the source code in escrow was miss-
ing many components and the escrow account did not con-
tain any documentation developed after the initial escrow of
the software.

Advocates against code escrow refer to this case as an exam-
ple of a failure;7 however, that instance serves to reinforce the
fact that the enterprise must take ownership and monitor the
development (external or internal) of its critical code with
diligence.

2. Deployment of escrow agreement
During regular operations, the enterprise and the escrow
agent must be involved in the service provider’s change man-
agement cycles: the enterprise must be informed of a change
(both regular and emergency changes), and the escrow agent
must receive the new code to update its libraries.

�. Trigger and execution of the escrow mechanism
If one of the clauses for code transfer is triggered by an event
stipulated in the escrow contract, this will probably be de-
tected and communicated by the enterprise to the service
provider and the escrow agent. More than likely the service
provider will require validation or a chance to further inves-
tigate, as it is not in their best interest that the source code
is shared or transferred to the enterprise. Depending on the
relationship between enterprise and service provider, it may
be advisable to involve legal counsel if the matter needs to be
expedited. However, since the code is now held by an inde-
pendent escrow agent, the enterprise may exercise its right to
gain access to the code once it has been determined that the
event has happened beyond reasonable doubt.

�. The day after
The organization finally gets the source code back. This could
be (1) a demand from an incident response procedure, for
investigative purposes following a security breach involving
the application in escrow, in which case the incident response
team can now proceed with a fresh copy of the latest source
code for analysis, or (2) the reaction to an imminent or actual
bankruptcy, merger, or acquisition of the software vendor. In
this case the ownership of the source code would be trans-
ferred to the enterprise. But now some organizations may be-
have like the dog that chased the car – they are not prepared
to do anything useful with the source code. Its developers,
testers and architects are not familiar with that piece of code
or the technology, there are no manuals or documentation

7 “Source Code Escrow: Are You Just Following the Herd?” CIO Magazine – http://www.
cio.com/article/187450/Source_Code_Escrow_Are_You_Just_Following_the_Herd_.

Using Code Escrow Services to Mitigate Third-Party Risks | Raoul Gomes and Rafael Etges

Please continue on page ��

ISSA Journal | January 2009

��

toolsmith: WebJob | Russ McRee

WebJob run was successful the .err file should be empty.
Note that the .rdy file is a file that contains server-side infor-
mation about the upload, and it acts as a lock release. In other
words, it indicates to other server-side tools that this job is
"ready" for additional processing.

In the official webjob 1.8.0 release there is also a tool called
webjob-create-profile. To create my toolsmith01 profile, I
would have done the following:

webjob-create-profile -H /var/webjob toolsmith01
That, in turn, would create

/var/webjob/profiles/toolsmith01
/var/webjob/profiles/toolsmith01/commands
/var/webjob/profiles/toolsmith01/config

as well as a number of config files that could, in turn, be
used on my client (i.e., my Ubuntu “monitor” server).

Hopefully, you get a sense of how extensive the options are,
and realize that many a process can be automated with We-
bJob.

WebJob resources
—Basic Integrity Monitoring via WebJob (BIMVW).7

—All the Integrity Project tool goodness you’ll ever need.8

—Some of WebJob’s automation benefits.9 This study makes
a compelling case for WebJob’s return-on-investment (ROI),

7 http://webjob.sourceforge.net/Files/Recipes/ftimes-bimvw.txt.

8 http://www.korelogic.com/tools.html.

9 http://webjob.sourceforge.net/Files/Papers/webjob-breakeven-analysis-install-
solaris-package.pdf.

and translates to almost any other common/repetitive IT
task.

—Those among you who manage Snort farms may find the
cookbook entry “Managing multiple Snort instances on
many systems” extremely useful.10

In conclusion
In both our discussions regarding tools from the Integrity
Project, we’ve barely touched on the endless uses for these
tools. Again, be sure to read the cookbook and man pages for
each. Both security practitioners and system administrators
are well advised to consider multiple uses for WebJob.

Thanks to the Integrity Project for contributing mightily to
this two-part series; I look forward to other offerings from
this group in the future.

Cheers…until next month.

Acknowledgments
Bob Austin and Klayton Monroe of KoreLogic Security for
significant contributions to this two-part series.

About the Author
Russ McRee, GCIH, GCFA, CISSP, is a security analyst working
in the Seattle area. As an advocate of a holistic approach to in-
formation security, Russ’ website is holisticinfosec.org. Contact
him at russ@holisticinfosec.org.

10 http://webjob.sourceforge.net/Files/Recipes/webjob_manage_snort.txt.

party software for critical functions (SaaS – some compa-
nies even specialize in escrow services for SaaS providers12),
or outsourcing the creation of critical applications such as a
critical financial system used by a bank and developed and
maintained by an independent software development com-
pany. In such a scenario, the bank relies on the application
to conduct transactions but does not have access to its source
code, nor does it control the financial health of the devel-
opment company or its internal resources and management
practices. This situation exposes the bank to considerable
risk. Whenever the scenario includes a critical piece of soft-
ware and substantial risk involving its developer, code escrow
should be considered.

Conclusion
Source code escrow is a non-intrusive and essential area of
risk management that is often overlooked when protecting
information systems. Without the original source code, it is
challenging to conduct code reviews and assess risks that an

12 http://www.nccgroup.us/software-escrow/saas-escrow.aspx, also “SaaS: Good for
customers, vendors, or both?” – http://news.cnet.com/8301-13505_3-9892135-
16.html.

application is subjected to, as well as investigating incidents
related to fraud and misuse of applications.

Escrow service is a viable alternative that can be considered
similar to insurance: sometimes it is
never used. However, when used it can be
the last line of defense when everything
else fails. It is an inexpensive and simple
control that can be used to ensure that
the code your organization relies upon is
available to you when the worst case sce-
nario occurs.

About the Authors
Raoul Gomes is a security advisor currently
working with Holding Trust Inc. He can be
contacted at raoulg@gmail.com.

Rafael Etges is the National Practice Lead-
er for Governance, Risk & Compliance at
TELUS Security Solutions. He can be con-
tacted at rnetges@yahoo.com.

The opinions expressed in this article do not necessarily reflect
the views and policies followed by the author’s employers.

Scource code escrow continued from page �0

ISSA Journal | January 2009

